
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ucgs20

Nonparametric Additive Models for Billion
Observations

Mengyu Li, Jingyi Zhang & Cheng Meng

To cite this article: Mengyu Li, Jingyi Zhang & Cheng Meng (19 Mar 2024): Nonparametric
Additive Models for Billion Observations, Journal of Computational and Graphical Statistics,
DOI: 10.1080/10618600.2024.2319684

To link to this article:  https://doi.org/10.1080/10618600.2024.2319684

View supplementary material 

Published online: 19 Mar 2024.

Submit your article to this journal 

Article views: 325

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/journals/ucgs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2024.2319684
https://doi.org/10.1080/10618600.2024.2319684
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2319684
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2024.2319684
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2319684?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2024.2319684?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2319684&domain=pdf&date_stamp=19 Mar 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2319684&domain=pdf&date_stamp=19 Mar 2024


JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2024, VOL. 00, NO. 0, 1–16
https://doi.org/10.1080/10618600.2024.2319684

Nonparametric Additive Models for Billion Observations

Mengyu Lia , Jingyi Zhang∗b , and Cheng Mengc

aInstitute of Statistics and Big Data, Renmin University of China, Beijing, China; bCenter for Statistical Science, Department of Industrial Engineering,
Tsinghua University, Beijing, China; cCenter for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China, Beijing, China

ABSTRACT
The nonparametric additive model (NAM) is a widely used nonparametric regression method. Nevertheless,
due to the high computational burden, classic statistical techniques for fitting NAMs are not well-equipped
to handle massive data with billions of observations. To address this challenge, we develop a scalable
element-wise subset selection method, referred to as Core-NAM, for fitting penalized regression spline based
NAMs. Specifically, we first propose an approximation of the penalized least squares estimation, based
on which we develop an efficient variant of generalized cross-validation (GCV) to select the smoothing
parameter and approximate the Bayesian confidence intervals for statistical inference. Theoretically, we
show that the proposed estimator approximately minimizes an upper bound of the estimation mean
squared error. Moreover, we provide a non-asymptotic approximation guarantee for the proposed estimator
and establish the asymptotic optimality of the proposed variant of GCV. Extensive simulations demonstrate
the superior accuracy and efficiency of the Core-NAM method. We also apply the proposed method to a total
column ozone dataset containing nearly one billion observations, and the results indicate a speed-up by
almost a thousand times with comparable performance compared to the full data approach. Supplementary
materials for this article are available online.
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1. Introduction

Nonparametric additive models (NAMs) (Stone 1985; Hastie
and Tibshirani 1990; Wood 2017) are a class of models that aim
to capture the complex relationship between a response variable
and covariates as a sum of smooth functions of the covariates.
Compared to classical linear models, NAMs relax the strict lin-
ear assumption and possess better flexibility. Moreover, NAMs
overcome the so-called “curse of dimensionality” that impedes
the estimation of multivariate nonparametric models (Stone
1985).

Despite the effectiveness, fitting NAMs using conventional
methods can be computationally expensive, particularly when
the sample size is considerable. For instance, given a sample
with n observations, the time complexity of iterative backfit-
ting algorithms (Breiman and Friedman 1985; Buja, Hastie, and
Tibshirani 1989) is O(n2) per iteration, and that of penalized
least squares is O(n3) using smoothing splines (Wahba 1990)
or O(nq2) using regression splines (Wood and Augustin 2002),
where q is the number of basis functions.

To address this computational bottleneck, many scalable
methods have been developed for nonparametric regression,
including but not limited to matrix decomposition (Wood,
Goude, and Shaw 2015; Wood et al. 2017), parallelization (Wood,
Goude, and Shaw 2015; Wood et al. 2017), and covariate
discretization (Helwig and Ma 2016; Wood et al. 2017; Zhang
et al. 2018). Furthermore, various basis selection approaches
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to approximate smoothing splines (Ma, Huang, and Zhang
2015; Ma et al. 2017; Meng et al. 2020, 2022; Diao et al. 2023)
and efficient smoothing parameter selection methods (Wood
2004; Helwig and Ma 2015; Wood, Pya, and Säfken 2016; Sun,
Zhong, and Ma 2021) have been proposed for NAMs or general
smooth models. The variable selection problem has also been
investigated extensively for NAMs (Meier, van de Geer, and
Bühlmann 2009; Huang, Horowitz, and Wei 2010; Marra and
Wood 2011; Fan, Feng, and Song 2011; Scheipl, Fahrmeir, and
Kneib 2012; Dai, Lyu, and Li 2023). We refer to Perperoglou
et al. (2019); Wood (2020) for recent reviews. Nevertheless,
existing research on nonparametric regression has thus far only
used datasets comprising at most 10 million observations as
examples (Wood et al. 2017; Yang, Yao, and Zhao 2023), and
more efficient approaches for analyzing super large-scale data
with billion observations are still meager.

One solution to improve the computational efficiency is to
fit the model to a subset of observations. Such a line of work is
called the coresets approach, also referred to as subsampling or
subset selection, which has been widely used for dealing with
massive data of huge n. By effectively selecting representative
observations from the full sample, the coresets not only greatly
reduce computational burden (Ma and Sun 2015; Wang, Yang,
and Stufken 2019; Wu et al. 2023; Zhang et al. 2023), but also play
an essential role in measurement-constrained problems (Wang,
Yu, and Singh 2017; Meng et al. 2021) and privacy-preserving

© 2024 American Statistical Association and Institute of Mathematical Statistics
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Figure 1. Illustration of the locality of basis functions (left) and the sparsity of design matrices (right). Both the n observations and q knots are grid points evenly spaced on
[0, 1], where n = 30 and q = 10. Each subfigure corresponds to a specific choice of spline.

settings (Wang, Balle, and Kasiviswanathan 2019; Balle, Barthe,
and Gaboardi 2020). Another possibility to reduce the compu-
tational cost is the online methods (Schifano et al. 2016; Kong
and Xia 2019; Xue and Yao 2022; Yang and Yao 2023; Yang, Yao,
and Zhao 2023), which are beyond the scope of this article.

A variety of randomized and deterministic coresets methods
for regression have been proposed in the past decade. Although
existing coresets approaches have proven to be effective theo-
retically and empirically, their proper use is mostly restricted
to parametric regression, such as linear models (Dasgupta et al.
2009; Boutsidis, Drineas, and Magdon-Ismail 2013; Ma and Sun
2015; Meng et al. 2017; Dereziński, Warmuth, and Hsu 2018;
Wang, Yang, and Stufken 2019; Ma et al. 2020; Wang et al. 2021),
generalized linear models (Wang, Zhu, and Ma 2018; Ai et al.
2021; Yu et al. 2022), quantile regression (Wang and Ma 2021; Ai
et al. 2021), streaming time series (Xie et al. 2019; Xie, Bai, and
Ma 2023), among others. We refer to Li and Meng (2021); Yu, Ai,
and Ye (2023) for a comprehensive overview. A few exceptions to
this trend include several model-free coresets methods without
requiring explicit model assumptions (Mak and Joseph 2018;
Joseph and Mak 2021; Dai, Song, and Wang 2023), as well as
a recently developed independence-encouraging subsampling
method (Zhang et al. 2023) designed for NAMs.

However, considering that widely used basis functions (e.g.,
the cubic regression spline basis and the B-spline basis) are typi-
cally local (Wood 2017), that is, each basis function only has rela-
tively large values over a small interval (whose size depends on q)
and is close (or equal) to zero in the remaining domain, it follows
that the induced design matrix is often numerically (or strictly)
sparse1 (as illustrated in Figure 1). For such design matrices of
high sparsity, the coresets methods relying on row-wise selection
may become inefficient. More precisely, when the design matrix
is sparse, the selected row-wise subset also tends to be sparse,
in which the near zero elements have almost no impact on
downstream matrix computations, leading to inefficient results.
To overcome this obstacle, Li et al. (2023) proposed a novel
element-wise subset selection method for sparse design matrices

1Intuitively, “numerically sparse” is a relaxation of “sparse” that allows many
small (but nonzero) elements; see Gupta and Sidford (2018) and Carmon
et al. (2020) for a detailed definition.

in classical linear models, named “core-elements.” In this article,
by realizing the inherent sparsity of the design matrix arising
from basis evaluations, we propose an efficient and scalable
approach for approximating penalized least squares estimation
in additive models.

Major contributions. We summarize our contributions
as follows. First, we design a novel Core-NAM method for
NAMs with improved scalability. By selecting core-elements
from the full sample and leveraging sparse matrix operations,
the proposed method efficiently approximates the penalized
least squares estimation and chooses the smoothing parameter
through a core-elements generalized cross-validation (Core-
GCV) within constantly low time and space. Second, we
establish the theoretical properties of the proposed method.
We show the asymptotic optimality of our proposed Core-
GCV procedure; that is, under certain regularity conditions,
minimizing the Core-GCV score is asymptotically equivalent
to minimizing the “golden criterion,” loss function, in the sense
of expectation. Moreover, we provide a relative error bound
for the core-elements estimation. Third, we conduct numerical
experiments on billion observations. Extensive simulations
demonstrate the effectiveness of our method in model fitting,
prediction, and Bayesian confidence interval approximation.
In addition, we consider a newly released total column ozone
(TCO) dataset (Bodeker et al. 2023), which records daily
ozone measurements spanning the period from 1978 to 2019,
containing nearly a billion observations. Compared with the
full data approach, the proposed Core-NAM method requires
only 0.11% of the running time to obtain almost as accurate
predictions, demonstrating a decent tradeoff between speed and
accuracy.

The remainder of this article is organized as follows. We
begin by introducing the additive model and core-elements in
Section 2. In Section 3, we develop the main algorithm for addi-
tive models, and its theoretical properties are discussed in Sec-
tion 4. We evaluate the performance of the proposed estimator
through extensive synthetic and real-world datasets in Sections 5
and 6, respectively. The technical proofs and additional numeri-
cal results are provided in the supplementary materials. R codes
to reproduce the numerical results in this article are provided at
this link: https://github.com/Mengyu8042/Core-NAM.

https://github.com/Mengyu8042/Core-NAM
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2. Background

Here we summarize the notation used throughout the article.
We adopt the common convention of using uppercase boldface
letters for matrices, lowercase boldface letters for vectors, and
regular font for scalars. For a vector x, we denote its �p norm
by ‖x‖p and abbreviate its Euclidean norm (i.e., �2 norm) by
‖x‖. The spectral norm and Frobenius norm of a matrix X are
denoted as ‖X‖2 and ‖X‖F , respectively. Besides, we use κ(X)

to represent the condition number of X, that is, the ratio of the
largest singular value to the smallest singular value.

2.1. Nonparametric Additive Model

For iid data {(xi, yi)}n
i=1 ⊂ R

p ×R, the additive model takes the
form2

yi = f (xi) + εi with f (xi) =
p∑

j=1
fj(xij), (1)

where yi are the responses, xi = (xi1, . . . , xip)� contain p
covariates, fj(·) are smooth functions of the jth covariate, and
εi are random noises with zero mean and constant variance σ 2.

Standard spline-based approaches to estimate the model (1)
employ either smoothing splines (Reinsch 1967; Wahba 1990;
Green and Silverman 1993; Gu 2013) or penalized regression
splines (Eilers and Marx 1996; Wood and Augustin 2002; Wood
2003), among which the former class requires as many parame-
ters as the sample size n, while the latter one uses q � n param-
eters. In practice, the latter is often preferable for computational
convenience when the size of n is considerable. Therefore, we
focus on the penalized regression splines in the following.

Penalized regression splines. To estimate the smooth func-
tion f (·), each fj(·) is assumed to have a representation

fj(x) =
q∑

k=1
bjk(x)βjk, (2)

where bj1(·), . . . , bjq(·) are q chosen basis functions defined on a
sequence of q knots, and βj1, . . . , βjq are unknown parameters.
Substituting (2) into (1) yields a linear model

y = Xβ + ε, ε ∼ (0, σ 2I). (3)

Here, y = (y1, . . . , yn)� ∈ R
n is the response vector, X =

(X1, · · · , Xp) ∈ R
n×pq is a design matrix arising from basis

functions evaluated at {xi}n
i=1, that is, the (i, k)th component

of Xj ∈ R
n×q is bjk(xij), β = (β�

1 , . . . , β�
p )� ∈ R

pq is a
vector of parameters with β j = (βj1, . . . , βjk)

� ∈ R
q, and

ε = (ε1, . . . , εn) ∈ R
n is the noise vector. Without loss of

generality, we assume that n 	 d := pq and p is fixed.
One key choice in (2) is the basis dimension q (i.e., the

number of knots) (Perperoglou et al. 2019). To prevent over-
fitting and under-fitting, a hugely popular approach to facilitate
the choice of q is to use a relatively large number of knots and

2To simplify the presentation, the model (1) only includes the main-
effects, but it should be emphasized that the proposed method also
allows for incorporating interaction terms between covariates, for example,
fjk(xij , xik).

control the model smoothness by adding a wiggliness penalty to
the least squares objective (Eilers and Marx 1996; Wood 2017;
Perperoglou et al. 2019). Such a method is called the penalized
least squares (PLS) criterion, which is to minimize the objective

‖y − Xβ‖2 +
p∑

j=1
λjβ

�Sjβ , (4)

where Sj ∈ R
pq×pq are known penalty matrices such that

β�Sjβ measure the wiggliness of fj(·), and λj ≥ 0 are smooth-
ing parameters that balance between model fitting and model
smoothness, for j = 1, . . . , p. For example, a prevalent class of
penalized regression splines are P-splines (Eilers and Marx 1992,
1996, 2010), in which the basis functions are B-spline bases, and
the nonzero block of Sj equals D�

j Dj, where Dj is the matrix
representation of the δth difference operator 	δ (δ ∈ Z+).

Smoothing parameter selection. Once the smoothing
parameter λ = (λ1, . . . , λp)� is given, the objective (4) is readily
minimized to obtain the PLS estimation3

β̂λ = (X�X + Sλ)
−1X�y, (5)

where Sλ = ∑p
j=1 λjSj. Some popular criteria to choose the

“optimal” value of λ include Mallows’ CL (Mallows 1973), cross-
validation (CV) or generalized cross-validation (GCV) (Stone
1974; Wahba and Wold 1975; Craven and Wahba 1978; Golub,
Heath, and Wahba 1979), restricted maximum likelihood
(REML) (Wahba 1985; Wood 2011; Gu 2013), and more.
Considering the desirable properties of GCV (Craven and
Wahba 1978; Li 1987; Gu and Wahba 1991; Gu 2013; Patil et al.
2021), we focus on this criterion, that is, to minimize the GCV
score

V(λ) = n‖y − Xβ̂λ‖2

[n − Tr(Hλ)]2 (6)

with respect to (w.r.t.) the smoothing parameter, where Tr(Hλ)

is the effective degrees of freedom of the model, and Hλ =
X(X�X+Sλ)

−1X� is the hat matrix, satisfying that Hλy = Xβ̂λ.
Note that calculating either β̂λ or V(λ) involves a computing
time of the order O(nq2), so the overall time complexity of solv-
ing minλ V(λ) is O(ζnq2), where ζ is the number of iterations
required for the optimization problem to converge. In the face
of extremely large datasets, the computational cost of the order
O(nq2) for a single iteration may be prohibitively large, let alone
to calculate it iteratively. Consequently, computation is a major
bottleneck for applying additive models on massive data.

2.2. Core-Elements for Linear Models

Recognizing the limitations of coresets strategies when applied
to sparse design matrices, Li et al. (2023) proposed a core-
elements method for approximating the ordinary least squares
(OLS) estimation in linear models (3).

Let X∗ ∈ R
n×d be a sparse sketch of the design matrix

X ∈ R
n×d. In particular, given a sampling budget s ∈ Z+ (i.e.,

3Without loss of generality, we assume that X�X + Sλ is positive definite.
Otherwise, it is straightforward to replace the inverse with a generalized
inverse.
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the number of selected elements), let P ∈ R
n×d be a binary

matrix such that its elements involve s ones and (nd − s) zeros.
The sketch X∗ then is formulated as X∗ = P � X, where �
represents the Hadamard product, that is, element-wise product.
It is assumed that both X�X and X∗�X are nonsingular.

Starting from a general estimation based on X∗, taking the
form β̃(D) = DX∗�y, where D ∈ R

d×d is a scaling matrix to be
determined, the core-elements estimation proposed by Li et al.
(2023) is motivated by two fundamental properties: unbiased-
ness and effectiveness. First, to ensure β̃(D) is unbiased to the
true parameter β , the scaling matrix D is set to be (X∗�X)−1.
Subsequently, an upper bound for the variance of the estimation

β̃ = (X∗�X)−1X∗�y (7)

is derived and approximately minimized, leading to the principle
of core-elements selection; that is, the sparse sketch X∗, contain-
ing at most s nonzero elements, keeps the elements with the top
�s/d largest absolute values in each column of X while setting
the remaining elements to zero. The proposed core-elements
estimation has theoretical approximation guarantees w.r.t. the
full sample OLS estimation, and it exhibits superior performance
over mainstream competitors in empirical experiments, partic-
ularly when applied to sparse design matrices.

3. Method

In Section 2.2, we introduced the core-elements approach
designed for sparse matrices in classical linear models. Encour-
agingly, the design matrices in NAMs exhibit natural sparsity
(as discussed in Section 1), making it reasonable to extend the
idea of core-elements to accelerate the estimation of NAMs.
Nonetheless, this extension is not straightforward mainly for
two reasons. First, compared to the OLS estimation, PLS
involves an additional penalty term, necessitating a new form
of core-elements estimator with theoretical guarantees. Second,
the main computational bottleneck in NAMs is the selection
of smoothing parameters, which is significantly more time-
consuming than computing the PLS estimation itself. Therefore,
developing a fast GCV approach based on core-elements is of
utmost importance.

In this section, we present our main algorithm. We first
develop the core-elements estimation for NAMs and introduce
the principle to select core-elements motivated by approximately
minimizing the mean squared error (MSE). Based on the pro-
posed estimator, we further design a core-elements GCV proce-
dure to select the smoothing parameter efficiently.

Core-elements estimation. Inspired by the formulation (7),
we propose an approximation for the PLS estimation (5) based
on the sparse sketch X∗, taking the form

β̃λ = (X∗�X + Sλ)
−1X∗�y. (8)

Similar to that in (4), here we assume that X∗�X + Sλ is of full
rank. Starting on the formulation (8), our goal is to find a sketch
X∗ that approximately minimizes the MSE of β̃λ, defined as
MSE(β̃λ) = E(‖β̃λ−β‖2). Although the MSE has a closed form
(see supplementary materials for details), directly minimizing
it poses a significant challenge. To surmount the obstacle, we
provide an upper bound for MSE(β̃λ) in Proposition 1 and aim
to minimize this upper bound instead.

Proposition 1. Let L = X − X∗. A Taylor expansion of MSE(β̃λ)

around the point X∗ = X yields the following upper bound,

MSE(β̃λ)

≤ σ 2{[1 + O(γ0)](‖XD‖2
F + ‖D‖2

2‖L‖2
F) + O(γ0) Tr(D)}︸ ︷︷ ︸

Upper bound of variance

+ [1 + O(γ0)]‖DSλβ‖2︸ ︷︷ ︸
Upper bound of square bias

, (9)

where D = (X�X + Sλ)
−1, and the spectral radius γ0 =

‖DL�X‖2 is assumed to be smaller than one to guarantee the
convergence of the matrix series.

When X∗ = X, it can be shown that the upper bound in (9)
equals MSE(β̂λ). Otherwise, this upper bound decreases as ‖L‖F
and the remainder γ0 decreases. The γ0 can be further bounded
by

γ0 ≤ ‖D‖2‖X‖2‖L‖2 ≤ ‖D‖2‖X‖2

(
d max

j∈{1,...,d}
L(j)�L(j)

)1/2
,

where L(j) denotes the jth column of L. Such an inequality
indicates that a smaller value of the maximum column norm of L
is associated with a smaller γ0. As a result, to minimize the upper
bound of MSE(β̃λ), we need to keep both ‖L‖F and the column
norms of L as small as possible. This leads to a core-elements
selection criterion aligning with that in Li et al. (2023): given
the sampling budget s, the sketch X∗ is constructed by retaining
�s/d elements with the top largest absolute values w.r.t. each
column of X and zeroing out the remaining. Intuitively, such
L has the approximately minimum column norm respecting
every column. Hence, both the values of ‖L‖F and ‖L‖2 are
approximately minimized, resulting in a relatively small upper
bound of MSE in Proposition 1.

Core-elements GCV. Next, we consider the smoothing
parameter selection based on core-elements. Let rs be the
number of rows containing nonzero elements in X∗. By
extracting these rs rows from X∗ and X, and corresponding
elements from y, we denote X∗

s ∈ R
rs×d, Xs ∈ R

rs×d, and
ys ∈ R

rs , respectively. Similar to (6), we define the objective of
core-elements GCV (Core-GCV) as

Vs(λ) = rs‖ys − Xsβ̃λ‖2

[rs − Tr(H∗
λ)]2 , (10)

where the hat matrix H∗
λ is defined as H∗

λ = Xs(X∗�
s Xs +

Sλ)
−1X∗�

s . Note that the core-elements estimation (8) can also
be written as β̃λ = (X∗�

s Xs + Sλ)
−1X∗�

s ys, so the condition
H∗

λys = Xsβ̃λ is also satisfied here.
Combining the above mentioned procedures, Algorithm 1

summarizes the Core-NAM method for additive models. This
algorithm is applicable to a broad spectrum of basis functions,
such as cubic regression splines and P-splines for univariate
cases, and tensor product bases for interaction modeling. The
basis functions are located on q evenly spaced knots spanning
the domain. Furthermore, we investigate smoothness-adaptive
knot selection, with methodology and simulation details avail-
able in the supplementary materials.
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Algorithm 1 Core-NAM method for additive models
1: Input: X = (Xij) ∈ R

n×d with d = pq, y ∈ R
n, r = �s/d ∈

Z+
2: Construct the sparse sketch X∗: O(nnz(X))

a) Initialize P = (Pij) = 0n×d
b) For j = 1, . . . , d:

Let I = {i1, . . . , ir} be an index set, such that {|Xikj|}r
k=1

are the largest r elements among {|Xij|}n
i=1

Let Pij = 1, for i ∈ I
c) X∗ = P � X, where � represents the Hadamard product

3: Compute λ̃ = arg minλ Vs(λ), where Vs(λ) is defined
by (10) O(ζ rq2 + ζq3)

4: Return β̃λ̃ = (X∗�X + Sλ̃)
−1X∗�y O(rq2 + q3)

Computational cost. For Step 2 in Algorithm 1, constructing
the sketch X∗ by using a partition-based selection algorithm
requires O(nnz(X)) computational time (Musser 1997; Martinez
2004; Wang, Yang, and Stufken 2019), which can be easily paral-
leled. For Steps 3 and 4, because each column of X∗ contains at
most r nonzero elements, calculating X∗�X takes O(rq2) time by
using sparse matrix representations and operations (Bates and
Eddelbuettel 2013). The computational cost of β̃ or Vs(λ) is thus
of the order O(rq2 + q3). Therefore, the overall time complexity
of Algorithm 1 is O(nnz(X) + ζ rq2 + ζq3), where ζ is the
number of iterations to solve the optimization problem in Step
3. In addition, the memory cost of Algorithm 1 is O(nnz(X) +
rsq). Once the core-elements are prepared, the estimation only
requires constant low time and space when r and q are fixed.

The Core-NAM approach can also be used to efficiently
approximate the Bayesian confidence interval (Wahba 1983;
Wood 2006b); see the supplementary materials for details.

4. Theoretical Results

In this section, we first show the asymptotic optimality of the
proposed Core-GCV criterion. Then, we demonstrate that the
core-elements estimation achieves the (1 + ε)-approximation
w.r.t. the full sample estimation (5). Technical proofs are pro-
vided in supplementary material.

4.1. Optimality of Core-Elements GCV

Despite the “golden criterion” to choose λ is to minimize the loss
function

Ls(λ) = 1
rs

‖Xsβ − Xsβ̃λ‖2, (11)

this cannot be done directly becauseLs(·) involves the unknown
β . However, Theorem 1 shows that minimizing the expected
Core-GCV score is asymptotically equivalent to minimizing the
expected loss function.

Theorem 1. As s → ∞ and q = o(s), under the conditions:

(i) r−1
s Tr(H∗

λ) → 0;
(ii) [r−1

s Tr(H∗
λ)]2/[r−1

s Tr(H∗
λH∗�

λ )] → 0,

the E[Vs(λ)] always has a minimum λ̃ such that the “ineffi-
ciency” of Core-GCV defined by

I∗ = E[Ls(̃λ)]
minλ E[Ls(λ)]

tends to one.

Theorem 1 indicates that the loss when λ is estimated by
minimizing Vs(λ) is close to the minimum possible loss, in the
sense of expectation. The assumption q = o(s) implies rs → ∞
as s → ∞. Conditions (i) and (ii) are commonly used in GCV
literature (Golub, Heath, and Wahba 1979; Gu and Ma 2005;
Gu 2013; Xu, Shang, and Cheng 2019), and can be respectively
satisfied when ‖H∗

λ‖2 = o(rs/q) and κ(H∗
λ) = o(

√
rs/q). Such

conditions are mild, only requiring the spectral norm (resp.
condition number) of H∗

λ to grow more slowly than rs/q (resp.√
rs/q).

Remark 1. Since the loss function Ls(·) is defined on a subset
of observations, the corresponding optimality in Theorem 1 is
indeed “local optimality.” The “global optimality” w.r.t. L(λ) =
n−1‖Xβ − Xβ̃λ‖2 can also be similarly achieved by defining

λ̃ = arg min
λ

E[V ′
s(λ)], where V ′

s(λ) = n‖y − Xβ̃λ‖2

[n − Tr(H∗
λ)]2 .

However, the time and space complexities of computing V ′
s(λ)

grow linearly with n, not as scalable as Vs(λ). In practice, Vs(λ)

and V ′
s(λ) usually have similar empirical performance, while the

former requires significantly less time. Hence, we choose Vs(λ)

as the Core-GCV score.

4.2. Approximation Guarantee

Theorem 2 provides a non-asymptotic relative error bound for
the proposed core-elements estimation β̃λ.

Theorem 2. Recall that X∗ is the sparse sketch of X and β̃λ is
defined by (8). When X∗ satisfies ‖X − X∗‖2 ≤ ε′‖X‖2 with

0 < ε′ ≤ 1
c

[
1 + c + 1

(
√

1 + ε − 1) RSSE(β̂λ)

]−1
, (12)

we have
‖y − Xβ̃λ‖2 ≤ (1 + ε)‖y − Xβ̂λ‖2.

In (12), c = ‖X‖2
2‖(X�X + Sλ)

−1‖2 and RSSE(β̂λ) = ‖y −
Xβ̂λ‖/‖y‖ is the relative sum of squares error (RSSE) of the full
sample estimation β̂λ.

Theorem 2 indicates that to achieve the (1+ε)-approximation,
Algorithm 1 requires a sketch X∗ such that the ratio ‖X −
X∗‖2/‖X‖2 is O(ε1/2). Intuitively, such a result also indicates
that when the predictor matrix X becomes (numerically)
sparser, fewer elements are required to select to achieve the
same relative error. The upper bound in (12) also depends on
the value of c and RSSE(β̂λ), in which c ≤ κ2(X) because Sλ

is positive semidefinite. In particular, to achieve the (1 + ε)-
relative error, a larger ε′ is admitted when the condition number
of X or the signal-to-noise ratio of additive models is smaller.
The following remark discusses the relationship between ε′ and
the number of selected elements s in a specific case.
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Figure 2. Illustration of the true functions.

Remark 2. Suppose the observations are n grid points on [0, 1]
for each of the p covariates, and each covariate is represented
using q evenly spaced B-spline basis functions with the order
being k (0 ≤ k < q); the examples of k = 1 and k = 3 are
depicted in Figure 1(b) and (c), respectively. Then, the design
matrix X is sparse with (k + 1)/q × 100% nonzero elements
equally distributed on each column. If the subsample parameter
r = �s/d in Algorithm 1 satisfies r < (k + 1)n/q and

r
n

≥ k + 1
q

− ε′2‖X‖2
2

npq
, (13)

then the sketch matrix X∗ achieves the condition ‖X − X∗‖2 ≤
ε′‖X‖2 in Theorem 2. Moreover, under the conditions of
Remark 2, it holds that ‖X‖2 = O(

√
(k + 1)np) when q is

fixed. Then, the inequality (13) indicates that Algorithm 1
needs to select (1 − cε′2)(k + 1)/q × 100% elements to
achieve the (1 + ε)-relative error for a constant c > 0. Such
a result tells us a smaller proportion of elements need to be
selected if the number of basis functions q is larger. This is
reasonable because a larger q corresponds to a sparser design
matrix X for locally spaced basis functions; see Section 5
for details.

5. Simulation Studies

In this section, we evaluate the performance of the Core-NAM
method using synthetic data. We compare Algorithm 1 (CORE)
with the full sample approach (FULL) and two row-sampling
methods, including the uniform subsample (UNIF) and the
LowCon method (LowCon) (Meng et al. 2021), which selects
a subsample approximating a space-filling design via nearest
neighbor search. To make a fair comparison, we select r rows
for the row-sampling methods and s = rd elements for the pro-
posed Core-NAM approach, such that the number of selected

elements from X is equal. All experiments are implemented on
a server with 256GB RAM and 64 cores Intel� Xeon� Gold
5218 CPU.

5.1. Accuracy and Efficiency

We generate iid observations with sample size n and dimension
p uniformly on [0, 1]p according to (1). The settings of the
function f (·) include four univariate functions (F1–F4) and two
multivariate functions (F5–F6), which are listed as follows and
illustrated in Figure 2.

F1. f (x) = ∑
j hjK(x − tj) with K(x) = [1 + sgn(x)]/2, where

sgn(·) is the sign function, (hj) = (4, −4, 2, −5), and (tj) =
(0.15, 0.3, 0.55, 0.8).

F2. f (x) = ∑
j hjK[(x−tj)/wj] with K(x) = 1/(1+|x|4), where

(hj) = (4, 2, 3, 4, 5), (tj) = (0.1, 0.16, 0.45, 0.65, 0.85), and
(wj) = (0.04, 0.02, 0.04, 0.06, 0.05).

F3. f (x) = 4 sin(4πx) − sgn(x − 0.3) − sgn(0.72 − x).
F4. f (x) = √

x(1 − x) sin[2π(1 + δ)/(x + δ)], where δ = 0.2.
F5. f (x1, x2) = 0.75 exp[−(x1 − 0.2)2/σ 2

1 − (x2 − 0.3)2/σ 2
2 ]/

(πσ1σ2) + 0.45 exp[−(x1 − 0.7)2/σ 2
1 − (x2 − 0.8)2/σ 2

2 ]/
(πσ1σ2), where σ1 = 0.3 and σ2 = 0.4.

F6. f (x1, x2, x3, x4) = f1(x1) + f2(x2) + f3(x3) + f4(x4), where
f1(x) = exp(2x), f2(x) = sin[2π(1 + δ1)/(x + δ1)] with
δ1 = 0.1, f3(x) = sin[2π(1 + δ2)/(x + δ2)] with δ2 = 0.1,
and f4(x) = 105x11(1 − x)6 + 103x3(1 − x)10.

Note that F1–F4 are classical smoothness-inhomogeneous
examples proposed by Donoho and Johnstone (1994, 1995),
named Blocks, Bumps, HeaviSine, and Doppler, respectively. The
functions in F5–F6 are also commonly used in nonparametric
regression literature (Wood 2006b; Meng et al. 2020; Sun, Zhong,
and Ma 2021). Additional analyses on higher-dimensional
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Figure 3. Comparison of different approaches w.r.t. MSE and PMSE under fixed n and increasing r. The vertical bar represents the standard deviation obtained from multiple
replicates.
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Figure 4. Comparison of different approaches w.r.t. MSE and PMSE under increasing n and fixed r. The vertical bar represents the standard deviation obtained from multiple
replicates.
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Table 1. Comparison of different approaches w.r.t. computational time (seconds) for n ∈ {103, 105, 107} and r = 200.

(a) F1. (b) F5. (c) F6.

Methods FULL UNIF LowCon CORE FULL UNIF LowCon CORE FULL UNIF LowCon CORE

n = 103 0.07 0.07 0.08 0.11 2.70 0.08 0.10 0.17 3.70 1.16 1.23 2.83
n = 105 0.64 0.10 0.11 0.15 3.14 0.11 0.13 0.35 6.13 1.31 1.49 3.43
n = 107 75.98 0.22 6.54 0.24 69.98 0.11 9.50 0.50 267.54 2.07 13.98 4.87

NOTE: The average time obtained from multiple replicates is reported.
*FULL is implemented using the bam function in the R package mgcv (Wood 2017).

Table 2. Time composition (seconds) of different approaches for F6 under n ∈ {103, 105, 107} and r = 200.

(a) Subdata selection. (b) Smoothing parameter selection. (c) Model estimation.

Methods FULL UNIF LowCon CORE FULL UNIF LowCon CORE FULL UNIF LowCon CORE

n = 103 – 0.00 0.00 0.00 3.68 1.15 1.22 2.82 0.02 0.01 0.01 0.01
n = 105 – 0.01 0.08 0.03 5.79 1.29 1.40 3.38 0.34 0.01 0.01 0.02
n = 107 – 0.02 12.01 1.04 234.65 2.04 1.96 3.81 32.89 0.01 0.01 0.02

NOTE: The average time obtained from multiple replicates is reported.

functions are presented in the supplementary materials. The
signal-to-noise ratio, defined as SNR = var[f (x)]/σ 2, is set to
be 5.

We use the cubic regression spline with the number of basis
functions being q = 40 for F1–F4 and q = 30 for F6, and
we use the tensor product spline (Wood 2006a, 2017) with q =
6 × 6 to fit the interactions in F5. The smoothing parameter λ is
selected by minimizing the Core-GCV score for the proposed
approach. For FULL and the row-sampling methods (i.e., UNIF
and LowCon), λ is estimated by minimizing the GCV score
respectively over the full sample and subsample following Chen
and Zhang (2022).

We evaluate their performance using two measures. One
is the fitting error measured by mean squared error MSE =∑n

i=1[f̂ (xi) − f (xi)]2/n, where f̂ is the estimator obtained by
different approaches. The other is the prediction error measured
by prediction mean squared error PMSE = ∑

x∈Xtest [f̂ (x) −
f (x)]2/|Xtest|, where the testing set Xtest contains about 106

evenly spaced grid points on [0, 1]p. In particular, the testing set
size |Xtest| = �106/pp. One hundred replicates are implemented
for each experiment.

First, we fix n = 104 and see the effect of the subsample size
r. Figure 3 shows the log-transformed MSE and PMSE versus
r ∈ {100, 200, . . . , 500}. The error when using the full sample is
a constant w.r.t. r and is included for comparison. In Figure 3, we
observe all subdata-based methods improve as r increases, with
our proposed CORE approach consistently performing the best.
More importantly, the performance of CORE can be comparable
to that of using the full sample for both fitting and prediction,
even when only 4% of the elements are selected. Such superiority
can also be observed from the comparison of fitted curves, which
are relegated to supplementary materials.

Next, we investigate the performance of different methods
under increasing full sample size n. We take n ∈ {103, 104, . . . , 107}
with r = 200 and plot the corresponding MSE and PMSE
in Figure 4. The results again show that the Core-NAM
outperforms the row-subsampling approaches and has similar
performance to full data under all circumstances. Notably, we
observe that both MSE and PMSE of the CORE method decrease
as the size n grows, even with a fixed subsample size of r = 200.

Figure 5. Histogram of the design matrix X for the basis dimension q ∈ {30, 40, 50}
with the sample size n = 104.

To see the computational efficiency of the proposed Core-
NAM approach, we report the computing time (in seconds) of
various methods in Table 1. The reported time includes the steps
of subdata selection, smoothing parameter selection, and model
parameter estimation. The results under F2–F4 are similar to
those under F1 and thus are omitted. From Table 1, we observe
that when n is enormous, the CORE approach computes as fast
as the naive UNIF method while comparing favorably to the
LowCon method, also being much more efficient than the full
data method. Taking the case of n = 107, for instance, CORE can
speed up the full sample estimation about a hundred times. For a
more comprehensive understanding of computational efficiency,
we further provide the time composition for each method in
Table 2. It can be seen that the computational load of the CORE
method is primarily dominated by the smoothing parameter
selection, and this is attributed to its iterative process in updating
model parameters and computing the Core-GCV score. Over-
all, combining the observations in Figure 4 and Table 1 demon-
strates that the proposed Core-NAM algorithm is suitable for
dealing with large-scale data analysis.

5.2. Sensitivity Analysis

As discussed in Section 4, the proposed method is influenced by
the design matrix sparseness and the noise level. We empirically
analyze how these two factors impact the performance of Core-
NAM. We fix the full data size n = 104 and set the subdata size
r ∈ {100, 200, . . . , 500}, same to those in Figure 3. We control
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Figure 6. Impact of the sparseness and noise levels on MSE for F1. Each row corresponds to a particular degree of sparsity (q ∈ {30, 40, 50}) and each column represents a
different noise level (SNR ∈ {2, 5, 10}). Vertical bars represent the standard deviations.

the sparseness and noise level by setting the basis dimension q
and the signal-to-noise ratio, that is, q ∈ {30, 40, 50} and SNR ∈
{2, 5, 10}, respectively.

We first illustrate the numerical sparsity of X and its relation-
ship with q in Figure 5, taking the cubic regression splines as
an example. Although there are only a few exactly zero elements
in X, Figure 5 shows that most elements are very close to zero
and can be neglected. The numerical sparsity of X is mainly
determined by the basis dimension q. Specifically, a larger value
of q leads to a higher proportion of elements in X approaching
zero. For instance, when q ∈ {30, 40, 50}, the proportions of
elements in X smaller than 10−6 are 71.5%, 77.8%, and 81.8%,
respectively.

Figures 6 and 7 show the log-transformed MSE and PMSE,
respectively, for different combinations of q and SNR. The results
indicate the advantage of Core-NAM becomes more apparent

as the basis dimension q increases or the SNR decreases. Specif-
ically, for a larger q or smaller SNR, Core-NAM only needs
to select a smaller proportion of elements from X to perform
as well as the full data. These findings are consistent with our
theoretical results. We also observe that the CORE approach
yields satisfactory estimation over a wide range of q and SNR,
demonstrating its robustness to these hyperparameters. Such
success can be attributed to the fact that the Core-NAM can
effectively use the sparsity structure of the design matrix and can
extract critical information from it.

5.3. Optimality of Core-GCV

We verify the asymptotic optimality of the proposed
core-elements GCV by calculating the empirical inefficiency
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Figure 7. Impact of the sparseness and noise levels on PMSE for F1. Each row corresponds to a particular degree of sparsity (q ∈ {30, 40, 50}) and each column represents
a different noise level (SNR ∈ {2, 5, 10}). Vertical bars represent the standard deviations.

Ls(̃λ)/ minλ Ls(λ), where λ̃ is selected by minimizing the
Core-GCV score (10) and Ls(·) is the loss function (11).

To satisfy the conditions in Theorem 1, we increase both
the full data size n and the subdata size r, that is, n ∈
{103, 103.5, 104, 104.5} and r ∈ {100, 200, 400, 800}. The
empirical inefficiencies against increasing n for F1–F6 are shown
in Figure 8. It can be observed that the inefficiency gradually
converges to the optimal value of one as n increases, which is in
great agreement with Theorem 1.

6. Real Data Example

Ozone is a crucial component of the earth’s atmosphere that
protects the biosphere from dangerous solar ultraviolet radiation
and maintains the atmospheric equilibrium. Total column ozone
(TCO), a measurement of the total amount of atmospheric

ozone in a given column, has been identified as one of the
fifty essential climate variables by the Global Climate Observing
System (Bodeker et al. 2021).

In this real data example, we aim to predict ozone levels and
examine the ozone geographical distribution using the NIWA-
BS Total Column Ozone Database collected by Bodeker et al.
(2023). The database contains near-global daily ozone measure-
ments at the resolution of 1.25◦ longitude by 1◦ latitude spanning
from October 31, 1978 to December 31, 2019, with the data size
of n ≈ 8 × 108. Following the model structures in Wood et al.
(2017) and Meng et al. (2020), we fit a nonparametric additive
model of the form

log(tcoi) = f1(yeari) + f2(doyi) + f3(lati,loni) + εi.

Here, the response log(tcoi) is the log-transformed TCO in
Dobson units (DU); the predictors are year (yeari), day of year
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Figure 8. Empirical inefficiency versus increasing n. The horizontal dashed line represents the optimal value of one. The vertical bar represents the standard deviation
obtained from multiple replicates.

Figure 9. Comparison of different approaches w.r.t. PMSE (left) and PMAE (right) for the ozone dataset. The vertical bar represents the standard deviation obtained from
multiple replicates.

(doyi), latitude (lati), and longitude (loni); and εi represents
the random noise. We use cubic regression splines (q = 20),
cyclic cubic regression splines (q = 20), and tensor product
smooths (q = 6 × 6) to fit the functions f1, f2, f3, respectively.
Considering that the true model is unknown, we evaluate the
performance of different methods via PMSE, with the train-
ing and test sets randomly partitioned according to the ratio
of 100:1. We also consider a more robust evaluation metric,
prediction mean absolute error PMAE = ∑

x∈Xtest |f̂ (x) −
f (x)|/|Xtest|, to address potential outliers in real-world data.
For a fair comparison, the subsample size is taken to be r ∈
{200, 400, . . . , 1000} rows, or s = rd elements equivalently.
The smoothing parameter λ is set in the same way as that in
simulations.

Table 3. Comparison of different approaches w.r.t. computational time (seconds)
for the ozone dataset.

Methods FULL UNIF LowCon CORE

r = 500 – 0.830 974.873 8.054
r = 1000 – 1.795 989.582 18.910
n 16926.709 – – –

NOTE: The average time obtained from multiple replicates is reported.
*FULL is implemented using the bam function in the R package mgcv (Wood
2017).

The prediction errors of subdata-based approaches against
increasing subsample sizes are presented in Figure 9, with
the error using full data also plotted for comparison. Agree
with the results in Figure 3, the proposed CORE approach
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Figure 10. Monthly average predicted total column ozone value (DU) for each month in the year of 2018, obtained from the Core-NAM approach with r = 2000. Each
subfigure represents a different month.

outperforms all other subdata-based methods and is comparable
to the full sample prediction, even when the selected number
of elements only accounts for less than 0.0002% of the entire
design matrix. Table 3 reports the computational time for the
ozone dataset, from which we can see CORE only requires
0.11% running time compared to FULL, indicating the signif-
icant efficiency of the proposed method in handling massive
data.

We illustrate the prediction results of the Core-NAM
method to investigate the global distribution of ozone. Figure 10
shows the monthly average predicted TCO for each month in
2018. It is seen that TCO peaks in the mid-latitude to high-
latitude regions in the northern hemisphere and the mid-
latitude regions in the southern hemisphere, while the minimum
TCO is in the polar regions. We also observe seasonal variability;
that is, at northern mid-latitudes, ozone amounts become larger
in winter and early spring and smaller in summer and fall. Such
observations conform to natural laws (Stolarski 2003) and can be
elucidated by the Brewer–Dobson circulation theory (Butchart
2014).

Further, we present the predicted TCO across years to study
long-term evolution. In Figure 11, the top panels show TCO for
earlier years (1980–1982), while the bottom panels show recent
counterparts (2016–2018). We observe that the contemporary

ozone levels near the South Polar are less than half the past.
These large Antarctic ozone losses are popularly known as the
Antarctic ozone hole (Newman 2003), whose development is
caused by the pollution with chemicals containing chlorine and
bromine.

7. Concluding Remarks

To address the computational challenges in NAMs, we pro-
pose a novel and scalable Core-NAM method for effi-
cient model fitting, prediction, and statistical inference. The
proposed approach has theoretical guarantees and behaves
superiorly to competitors in extensive numerical experi-
ments, showing excellent capability in super large-scale data
analysis.

Future works plan to extend the Core-NAM method to a
broader range of scenarios, such as the generalized additive
model (Wood 2017), the smoothing spline ANOVA model (Gu
2013), and distributed learning (Li and Zhao 2022). Considering
that the smoothing spline ANOVA model can also be esti-
mated via penalized least squares with smoothing parameters
selected by GCV, it is promising to extend the proposed core-
elements estimation and core-elements CGV method to acceler-
ate the corresponding procedures. However, a critical challenge
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Figure 11. Monthly average predicted total column ozone value (DU, latitude 45◦S to 90◦S) during October in specific years, obtained from the Core-NAM approach with
r = 2000. Each subfigure represents a different year.

in smoothing splines is the computational burden arising from
the large number of basis functions, which equals the sample
size. This highlights the need for exploring strategies to sparsify
these basis functions efficiently. Additionally, facilitating with
the developed powerful computing tool, we are interested in
the applications of nonparametric regression in massive real-
world data, solving critical scientific problems and advancing
our understanding in various domains.

Supplementary Materials

Appendix: contains complete proofs of theoretical results and additional
experiments to evaluate the performance of the proposed method.
(appendix.pdf, a pdf file)

Code: contains R code that implements the proposed method and repro-
duces the numerical results. A readme file describing the contents is
included. (code.zip, a zip file)
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